.- AD-A134 543 SOME EXPERIENCES WITH GASP-LIKE MICROCOMPUTER 1V
SIMULATION LANGUAGES IN FOR..{U} WISCONSIN UNIV-MADISON
) MATHEMATICS RESEARCH CENTER A THESEN ET AL. SEP 83
UNCLASSIFIED MRC-TSR-2571 DAAG29-80-C-0041 F/G 9/2 NL

a2 £
=

ll=

lle2

22 s es

MICROCOPY RESQLUTION TEST CHART
VAT GUREALL 0 S TANTWERD S Lo 4

MRC Technical Summary Report #2571

SOME EXPERIENCES WITH GASP-LIKE
MICROCOMPUTER SIMULATION LANGUAGES
IN FORTRAN, PASCAL, AND ADA

Arne Thesen and Rekha De Silva

3/3¢ 5¢3

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street

Madison, Wisconsin 53705

September 1983

(Received August 25, 1983) -

Approved for public release

OTIG FILE COPY Distribution unlimited

Sponsored by

U. S. Army Research Office
P. O. Box 12211

Research Triangle Park
North Carolina 27709

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

SOME EXPERIENCES WITH GASP-LIKE MICROCOMPUTER
SIMULATION LANGUAGES IN FORTRAN, PASCAL, AND ADA

Arne Thesen and Rekha De Silva

Technical Summary Report #2571

September 1983

ABSTRACT

-~ 7 The modelling and programming philosophy behind micro-computer
software used in teaching simulation is presented with implementations
in FORTRAN-80, Pascal/MT+ and Janus (an Ada subset). The relative

strengths and weaknesses of these implementations are discussed.

AMS (MOS) Subject Classification: !
Key Words: Simulation languages, Microcomputers, performance evaluation. /////2 4
]
J

Work Unit Number 6 - Miscellaneous Topics

Oy,e N,

————

,.O"l'v ,
L ":'!. /

o

sponsored by the United States Army under Contract No. DAAG29~-80-C-0041+

- —

LB AR S P RIS SRS T A S S ¢

m‘

SIGNIFICANCE AND EXPLANATION

At the University of Wisconsin-Madison we have successfully used micro-

computers for several years in our graduate level simulation courses. After
some initial start up problems, mostly caused by our failure to realize that !
micro-computers are not used in the same manner as main frames, we feel that

we are able to teach simulation at least as effectively with micros as we

once were with our larger computers. One reason for this is our development

of a simulation "language" specifically designed for use in an educational

environment by "naive" users.

In spite of our success in using micro-computers for simulation for
education, we have been having difficulties answering reasonable questions
regarding the utility of micro-computer based simulations in non-educational

settings. Typical concerns include issues such as:
1. Are micro-computers too slow for serious simulations?
2. Is sufficient memory available for large models?
3. Which programming language is best suited for model development?

. In this paper we will attempt to provide answers to these questions.

To provide for a fair comparison between different programming languages
we designed a simple discrete event simulation language with many of the
modelling features of more elaborate languages. This language was then imple-
mented in Microsoft PORTRAN, Pascal/MT+, and Ada/Janus, and the performance
of these implementations were compared.

The target language is presented in Section II. The three implementations
are discussed in Section III, and the evaluation of the implementation is pre-

sented in Section IV. The source codes of the three implementations are

available in a separate document [12].

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.

SOME EXPERIENCES WITH GASP-LIKE MICROCOMPUTER
SIMULATION LANGUAGES IN FORTRAN, PASCAL, AND ADA

Arne Thesen and Rekha De Silva

I INTRODUCTION

At the University of Wisconsin-—-Madison we have successfully used
micro-computers for several vyears in our graduate level
simulation courses. After some 1nitial start up problems., mostly
caused by our failure to realize that micro-computers are not
used in the same manner as main frames, we feel that we are able
to teach simulation at least as effectively with micros as we
once were with our larger computers. One reason for this is our
development of a simulation "language" specifically designed for
use in an educational environment by "naive" users.

In spite of our success in using micro—-computers for simulation
for education, we have been having difficulties answering
reasonable questions regarding the utility of micro-computer
based simulations in non—educational settings. Typical concerns
include i1ssues such as:

1. Are micro—computers too slow for serious simulations?

2. Is sufficient memory available for large models?

3. Which programming language is best suited for model
development?

In this paper we will attempt to provide answers to these
questions.

To provide for a fair comparison between different programming
languages we designed a simple discrete event simulation language
with many of the modelling features of more elaborate 1angquages.
This language was then implemented in Microsoft FORTRAN,
Fascal /MT+, and Adasdanus, and the performance of these
implementations were compared.

The target language 1is presented in Section [I. The three
implementations are discussed in Section III, and the evaluation
of the implementations is presented in Section IV, The source
codes of the three implementations are available 1n & separate
document L1213,

Sponsored by the United States Army under Contract No. DAAG29-80-C-004l.

e S S EEIIE -, 2 T RIS SO i T i

IX. THE TAaRGET LaAaNGuUaAaGE

A. Design Goals

The purpose of any simulation language :1s to free the analyst
from coding tasks so that she can concentrate on model
devel opment and analysis. Here, this global goal was
operationalized by specifying modelling capabilities, interface
goals and resource restrictions as fullows:

DESIGN OBJECTIVE
NODELLING CAPABILITIES (general purpose)

- Discrete event scheduling using user written event routines

= Automatic scheduling of recurrent events

- Floating point clock _

- Set amodelling capabilities with automatic data collection

- Service routines for collection and display of user
specictied data,

- Keyboard control of running scdels.

- Five cosson randos number generators

USER INTERFACE (user friendly)

- The user should not need to understand the design of the
sisulation data base.

- The user should not be able to cause run tise errors in
the siaulation package {for exasple by removing 2 non
existing entity).

- The resulting code should be a self docusented model _

- Host language should be designed to facilitate progras debugging

- Nodel verification should be facilitated by extensive error
checking and an interactivly controlled trace feature.

RESOURCE CONSIDERATIONS {rum on 8 bit aicras)

- The lan?uage should be small enough to allow roos for
reasonably cosplex sodels on a 44k byte micro-computer.

- Tise required to cospile and link 2 asodel should be
sufficiently saall to facilitate interactive sodel developaent
on & CP/M based desk top colruter.

- Time to execute a sodel should not be excessive.

B T T L R L Ll R TUIU SRS U §

@ Tt em tm e vi e # e B e P T e e vmer B we B mm v e - me e —— g = g me G

Table l: Design Ubjectives.

The commands of & language intended to implement these objectives
are listed 1n Table 2. To keep the si1:ze ot the system smail, some
desirable features were omitted. For exampie:

- Model building blocks such as facilities and inventories
are omitted.
-~ +#ll sets are ranked on the first attribute value
- Entities can only be removed trom the head of a set
- Simple linearly lirnked lists are used to represent aill sets.

= Unly the most common random numizer generataors are proviaoed.
Exper 1ence hae clicwn that moet commonly encountered model
teatures Caty be weowitly pr ogrammed «ith the tools providea v this

lLanguage. Ly the tew Casen whiere this was ditticult, 1t was eausy
to add bthe @ cagurr ed Jeaturec.,

-2-

H P T T T T T 1 *

Tlnelnteqrate(an,NenValue)

Collect data for time integrated averages ;

¢+

: EVENT SCHEDULING COMMANDS 1 Effect on sisulation model :
$zzzz #z333===3=53s3s333s8z22zss3Es *
i NextEvent i Updates sisulation clock and global variables TNow and Code
L e e e DL L L et e L Lttt L T R e datate +
i Recurrent (EventCode,Meanlnterval) ! Schedules perpetual sequence of events of type EventCode at expo- !
j : nentially distributed randon intervals with a sean of Neanlntervali
i Schedule (EventCode, Tllelncrelent). Schedules a single occurence of an event of type Eventlade to :
f i take place Tise ncrnent time units from current sisulated tise.
N +: s=z=3 ==s3zs=s
v SET MANAGEMENT COMMANDS i Eftect on the sisulation sodel ;
+33333353=2233=s== ¥ L 4
i InsertIntoiSetNo,Attributes) i Inserts the entity described b{ the vector Attributes into the set)
i i SetNo , such that the first attribute value for set sesbers are
: ' ranked in increasing order '
+ ReaoveFrom{SetNo,Attributes) ; Reaoves the entity at the head of the set. Returns its attribute |
E { values 1n the vector Attributes '
i Size(SetNo) E Returns the count of entities currently in set SetNo |
+ + +
$z2z2 + z==z + zzze
i RANDOM NUNMBER GENERATORS ! Distribution i Type
$z3== re + +
: Bernoulli (p) : Bernoulli with sean “p*® i Integer ;
i Exponential (taean) ; Exponential with sean "sean® ; feal]
1 Noreal (sean,stdv) ; Norsal with sean "sean” and standard deviation "stdv” ; Real
: Poisson{laabda) ; Poisson with sean "lasbda” ? Integer .
¢ + + --¢

' Uniforala,b) : Unifors between "a® and "b° i Real ;
: ------------ Tes +
¢ + +
i OTHER COMNANDS + Function ;
+ + == =41
i Collectibin, value} i Collect point values '
+ Histograatvalue) E Collect data for histogras i
+ + - -+
i Initialize i Initialize entire data base E
i Report Z Display statistical susmaries :
: .

Ev

Table Z: Commands Supported by Target Language

ents: ’Ag’ D§’
Vo P S oV
Flows ----- Elaltlng ane.----}i Server(si_!----)
Sets:) T Y '58° '
Figure l: Frocess Model of N-berver Gleuling svealem.

-3~

R. AN Example

To 1ntroduce our simple language,

simnulation model

Fiqure |.

1 START |

OF NEXT EVENT, i

PO Y

DETERNINE TIME i<-+

EXECUTE IT }
e yos |
! NORED |--ennnn .
$oomoeon +
ino
E - +
! PRINT SUNMARY |
RN —— +

Procedure Arrival

be?in , beaxn
 Siz20¢ (55") (Serverlount eacveFrom(’SS’,Eos, TEntry)

en
InsertInto(ML’ TNow)

else
Jerve {TNow)
end

Frogram 1:

The overall

Target model of

log

discussed here.

structure i this model.

we present in

Frogram

l, a

ot the n-server queuing system described 1in

Initialize

Recurrent {’AE’,TArriv)
ServerCount = n
Schedule(*LE’,TFim

Repeat
NextEvent
Case Code of
'AE’ shrrival
*DE’ :Departure

end
until 'LE’
Report

Procedure Departure
Callect {2, Thow-TEntry)

Collect {1, Tnow-TEntry)
Serve(TEnlry)
endit
end

ic of this moadel should be obvious and

Procedure Serve{EntryTisei
begin

erviceTise=Expo{MeanTine)
InsertInto(’S5’, TNowtSTine,EntryTine)
if Sizedfi’lt’) 0 then Schedule(’DE’,ServiceTise)

ResoveFros{'d.’, TEntry) end

N—-Server Uueuing System

18

Note that we chose to use an Algol-like

any implementation of the language

Statistics collected on sets Current time 15 = 100,00
Set Total Current ----Time-In-Set---- #vq.
No Input s1ze sin avg eax size
§5 14 0 0.13 0,32 0.8 0.45
L 4 0 0,06 0,12 0.25 0,09
Statistics on user collected data Current time 1s = 100,00
Un1t UBs Nean var StDev Min Max

i 4 U, 42 0.1 0.09 .06 0,25

i 14 G.36 0.03 017 0,13 0,89
Froaure I Output from Frogram

-4-

i.

ie & function

structuwres supported by the host languaqe.

¢ Tise in queue)
{ Time 1n systes)

of

not
block

Otbviously the program structure used in

the

The statistical summary report produced by this model 1S
presented 1n Figure 2, and a portion of the trace produced by the
running model 1 reproduced in Fiqure 3, In addition to
autamatically collected data, Figure 2 also includes summaries on
explicitly collected data on total time in the system and on time
1 queue.

Tise Cossand Event Set n Unit Paraseters

0.¢ Initialize

Recurrent AE 0. 49 0.5
Schedule LE 100,00 0.9
0.49 Event AE
Recurrent AE 0.7¢ 0.50
Sizelf 85 0
Insertinto §5 { 0.78 0,49
Schedule DE 0.78 0.29
0.71 Event AE
Recurrent AE 1.39 0.50
Sizelé 55 |
Insertinto L8 t 0.71
0.78 Event DE
Resovefros SS 0.78 0.49
Collect 2 0.29
Sizelf W 1
Reaovefroa W 0.71
Collect 1 0.07
InsertInto k1) 1 1.10 0.71
Schedule DE 1.10 0.32

Fiqure 3: Fartial trace produced by the model
C. MODELLING CONSTRUCTS

The language presented here is based on the GARSF IV langquage [71.
Details of the lanquage are discussed below.

1. Events and Event Scheduling

The act of entering i1nfaormation about future events in the future
events list 15 retferred to as Event Scheduling. A typical event
list 1s shown in Figure 4. Two mechanisms +or event scheduling
are recognized. These are discussed below.

L 23 =S¢

1 Code Events

$¢zz22zzzz sz=z=22 +

H TRE’ S Arrival of custoser

L et SR TS L +

v 20 e Departure of customer
e al e R L +

11000 LR End of simsulation
T S LT *

Figure 4: Tvpilcal event laist,

1 recurrent g et stream 1 A seguence ot Ve s teech as
CLs L Ot arr lvals) that orocwr s At random 1ntervals 1ndependent iy
ot Ling mbale ot Lhe sSysblem al «ny painbd oan dalies . Therae events
rnest by sy Toe E ot er val topat e b wo el Ui as customer s,

-5=-

machine breakdowns, messages etc. In Program 1 the command
Recurrent ("AE” , TArriv) is used to schedule a perpetual sequence
of type "AE® (arrival) events each of which is separated from its
neighbor by an exponentially distributed random interval with &
mean of TArriv.

A scheduled event is one that is explicitly inserted into the
events list by the user written model. This modelling construct
is used to create events that are triggered by state changes in
the simul ated system. In our erxample, the command
Schedule(’DE’ ,expo(TServ)) schedules a "DE" (departure) event to
occur expol{TServ) time units from the current simulated time.
Scheduled events differ from recurrent events in that they are
usually created when the state of the system a certain specified
state. Recurrent event stireams do not reflect the state of the
system.

2. User Detined Sets and Entities

The set modelling construct is used in most simulation 1languages
to represent and hold entities as they flow through the system
being simulated. In Frogram | we use the set "WL" to hold the
customers in the waiting line and the set 55" to hold customers
being served.

In our simple language all sets are ranked in increasing order ot
the first attribute of each entity. In Frogram | we want to serve
customers 1n the order they arrive. We theretore assign the time
of arrival to attribute one for all customers entering the gueue.
Qimilarly, for customers entering the "heing served set!' we
assign the end-of-service time to the first attribute.

Entities camn only be removed from the head of a set. This 15 the
most cerious shortcoming of the present desian. Our decision to
exclude routines tor removal of entities 1n the middle ot a set
was due to the i1ncrease in complexity to find the desired entity
{the actual removal of an entity when its position 1s known 15
trivial).

D. DATABABE MANAGEMENT

To & user, a simulation language may be thought of as a modellinag
tool. To the langquage 1mplementor however, 1l looks more Like a

data bhave management. syvstem. Thie i1e because an elaborate cata
base 1 required Lo bewp track ur the constantly changing stale
wt thie wcirwmulabted cvstem. In the +toliuwing we diccuses the
centept el destan o this swtructure.,

1. bvente and tvent oschedolbang

Dt o meat Lo bbout, Yindeviduatl events arse cuniained 1n event notices.
et 1y o Wbl el caitaray theee toulowing 1t ot mation:
-6-

l. Time of the event
2. Type of the event
3. Mean interval between recurrent events

To ensure proper execution of events, these event notices are
stored (at least logically) in chronological order in th
simulation data base. The task of maintaining the rnotices in tin
order i1s delegated to the event scheduling commands (Table .

Function Effect on event set

NextEvent (EventCode, Tise)

Retrieves code and time of next event
in list and deletes the corresponding
event notice

L
Il
'
+:
)
+
1
)
]
)

Recurrent(Eventtade,neanlnterval); Creates event notice. Inserts notice
i at proper place in set

Schedule (EventCode,Yilelncrenent)E Creates event notice. Flags event as

! nonrecurrent. Insertes in set
+

D it JER TP L PRI Skl 4
PN TP SRR S

Table J: Effect on Event Scheduling Commands on the Database.

The design of efficient data structures for simulation has been
subject of considerable interest in recent years [2.5,7,13]

(=]
S

=)

However to keep ouwr language simple, the only data structure used

in this project is the linked list. Figure 5 shows how the even
set in Figure 4 can be represented as a linked list.

Y
+

v

-

+ + + =t
i Type=EndD¢Sinus iType= Arrival:
'}:}lle= 204,670 iTimes 203.34:

EType=DepartureE H
iTime= 204,47:
Intervai= 0 | nterval= ¢ ‘Interval=3.00}

)
'
+ ¢ +

*

+ - =

Figure S: Linked List Representation of Events it in Fiaure 4.

Since the detailed i1mplementation of data structures depends o©
the programming leaenguage used, we derer the specitications o
record format and content for event notices to the thre
implemention sections.

-

2. User Det+tined Hets and Entities

fndividual entities are represented by entity records. les ree

C

M
.(
(=]

Ln

the system simple, We Are agealnn using linked fi1sts Lo waliitali

the recur ds 1 proper or der . T tactinltabe automatic colliecl i
wt per tormance Jdat o, the heoder recard Tor @ach dis terond e
tncludes space vor the rollowenig statintical dalas

[N
T

Number of entries into the set.

Current size ot the set.

Total time in set at time of last state change.
Time of last change 1n state of set.

Maximum time an entity has spent in the set.
Minimum time an entity has spent in the set.

[« S I P O ol

In Table 4 we summarize the etfect of different set
commands on the si1aulation data base.

management

b Function 2 Effect on the data structure E
o= + +
i Insertinto(SetNo,Attributes) | Obtains an entity record. Saves attribute values and other data.i
: i Links record into proper logical position in set. :
+*- + ¢
i Removefroa(SetNo.Attributes) | Moves attribute data from entity record to vector Attributes. :
; i Deletes entity record. Collects data on set utilization :
+ + ===t
i Size{SetNo) i No effect on data structure H
=== + ———t
Table 4:; Effect on Database of Set Management Comman: .
; + ¢ + + +
; i Language Features: Janus/Ada | FORTRAN-80 | Pascal/NT+
+ + t=322= ==¢ s323¢
) Dynamic Mesory | Yes) No : Yes
v Managesent : : : :
i Include Files Yes : No ; Yes E
i Separately comp- | Yes : Yes H Yes :
i iled library H : : :
b~ + + + ¢
1 Strongly Typed? | Yes H No : Yes
4e-- + - . + ¢
' Variable Names | Any Length : & char max | 8 signif.chr:
+ 4¢z==sz=s23=zz=s + = L z==¢
» Variables ' :
L3+ -4+t 33t F - L S S 4 S3 4 ++ 3 -4 ¢z + ==S2¢
i Double Precision | No ; Yes ; No
i keal Variables ! No] Yes E Yes H
[T ¢ ——poemnn ¢ .t
r + Record Type : Yes : No : Yes H
------------------ D et e ittt 4
i Scope of variabl.: Many options; Local,COMMON: Nested
L il L DL [$remmmmecm———. +
i Static Variables ; yes ! No i No
+===225=2=322 =2zs=33=38 4$233czzszoSsSIzoessDIsIz=asz=s $23222=xs3c=z=2 +
i Resource Reqats | '
Pt P P P E R P L I S P R+ P F e R P s P - P P P A P P 1
v Flioppy Disks Vo208 250k V28 80k 0 28 256k
------------------ [s D S e e R it 4
1 Meacry Require¢c ok) 64k : o4k :
L et i $emmmcemmermane L poememrecanae +
i Operating Jystes | W27 B e CFiN
33 ST F I F S I P X I AtV A IS R I+ 3+t 4+ S RS2 A - S F 1)

FTalsle S Lustingarlohiirng

T petramtier wlpre: == assii e

Languade Feoatures,

-8-

A

1ITI. IFFFL ELiENTAT IO

In thise cection we present the implementations of the target
lanyuage 1n the three ditferent programming languages. bBut first,
tor readers not familiar with the features of the languages used
in this repart, we present in Table 3 (page 8) a briet summary of
1mportant teatures,

A summary of the commands used in our implementations i1s given 1n
Taple 6. As we shall see, languaege differences have an 1mportant
tmpact on the manner 1n which these commands are implemented.

§
{

$==szzz3=z3IT=2=T zzz=z=z=s $=zs=zzzsz=3s= S¢sseTzIIIEzcIIoIsTIITIZII=ITIER =z ==z z==¢
i Target Language \ FORTRAN-30 : Pascal/ﬂT+ ; fda/danus H
$==3=z==2 ===z B SSSSSIZIIIZRe=== SSC oS ZISxéIIISoEZoTICRIsSzZIo=IIxIEsIisc +
; NextEvent v tall NEATEViievent) i NextEvent v Next_Event{Current Event} !
: Recurrent (code |ean). call RECUR{iev,tmean) | Recurrent{code,Meanlnterval) | RecurrentiEvent Code,Meani:
! Scheduleicade, ﬁlncr). call SCHEDU{iev,tinter): Schedulelcode,intterval) i Schedule(Code, Tinter) :
+ + + -—- - oo +
: {nsertInto(Set, Attr)} call INSERT(iset,a}) Insertinto{set) i Insert_Into{Set nusber) |
i ReaoveFromiSet,Attr)i call REMOVE{iset,a) \ ResoveFromiset) ! Remove From{Set Numberi !
y Size{Set) i NSIZE{iset) i Size0f(set) ! Size (¥ (Set_Nuaber) !
+ - L e L RS L L + - ¢ -

i Collecttbin,value) i call COLCT{i,x) i CollectiBinNumber,Value) + Collect(Bin,Value) i
: i call ERROR{D) : ; i
v Nistograsivalue) i call RISTOWX) i Histogras]]
i Inttialize i call INIT 1 Initialize i Initialize Events !
; :) ¢ Initialize Gets i
i J i v Initialize fata Collectioni
) Report ! call REPORT) Report 1 Set Report” :
: ' : i Lolfect Report g
1 Tiselntegrate(bin,Vii call TCQLLT(xt) v Teollect (Bin,Data? i TCollectBin,Value))
e L e e B L B + tmmwm—~ +
' Bernoulli(r) 1 1BERNO(p) { Bernoulli(?) : :
i Exponentialitaean) ; EXPDit) v Expoldaean]]
i Noramalisean,.stdvi ! ! :
1 Poisson(laabda) v IPQISN(a} i Poissonilambda) ; H
i Unitoraia,b) i UNIF (A, B) VUnitilhimt,ulint + Randoaifi, b '
Q------:::--_-,_--.‘:::&: $===z SoZZsSé=IsoScosSzIoxz=So==zZ=2s=z=z==== +

Tabxle o Summary of Implemented Commands

e FORTHAN-80
1. Bachgroawd

The FORTRAN raplementation 1s weitten 1n Phorosotrt FORTRaN-8O
Lo Thie FUORTRAN dialect pas AMSLT FGRTRAN IV as & subset.
sl exbtentions tnclude the zpilitly Lo give 1dentical names
L var L@l e idrrcatines aod WUMPMON crreas.) The campller and
Liricer ab e

C:!‘
T a

e vt Ly smed L. by fact this 1% tne only languaqge
thieb we Cal LS i Olr Hestis lenith LY mlorae-cominuter wlth
cligle density Do dd4 disks. e languade has some onhioving
tdlosvnor actes. The more grow Lant of these are menLioned 1o

ETE T A W TR SV

)

2. The N-Server Queuwling System

SIMULATION MODEL OF SIMPLE QUEUING SYSTEM ?
-- -+

[l luEe
-+ -

coason /data/nserv,tarriv,tserv,ibin
coason /CLOCK/tnos, tend
coaaon /EDLCT/n:(l&),othet(AO)

coason /LIST/nlists,ievset,ighead,alist{4,400),iptr (400

caonson /SEED/iseed
coanon /TRACE/1trace
% VARIABLES
L nsery = nusber of servers
C tarriv = sean inter arrival tise
% tqerv = mean service tise
C

" Eventil) = Customer arrival irecurrent event)
" {2) = End of service {triggered event)
C Colct(l) = Wait tise in queue
g (2} = Wait times in system

call INIT

tarriv = 0.3

TFin = 100,0

nserv = 2

tserv = 0.8

call RECUR(1,tarriv)
call SCHED(3,TFin
1000 call NEXTEV(1code)

1(1code.eq.!) call arrvi
itircode.eq. 2} call depart
11 (1code.ne.3) goto 1000

call REPORY

stop

end

Frogram 23 FORTRAN Version

Z. The Deta Base bHveltem

To 1llustrate the FORTRAN implementation we present
the FORTRAN version ot the N-server gueuwing system example.

................

€ place in service 1§ server is available
disension attrib(4}
cosson/data/nserv,tarriv,tserv,ibin
coason/CLOCK/ tnow
1f (NSIZE()).ge.nserv) go to 1000
call serveltnow)
return
L place in Queue
1000 attribili = Tnow

attrib(2l = Tnow

call INSERT(2,attrib)}
{ schedule next arrival

return

end

subroutine serveitentry)

disension attrib(4)

coason /data/nserv,tarriv,tserv,ibin
cosaon /CLOCK/tnow
twait=tnow-tentry

call COLCT(1,twait)

t5=ERLANG (tserv,3)

attriblli=ts+tnon

call INSERY i), attrib)

call SCHED(2,ts)
return

end

disension attrib
cosson sdatasnserv.tarriv,tserv,ibin
coason /CLOCK/tnow

€ server finishing tirst 15 first in set
call REMGVE(],attribs

tsKs=tnou-attribt2)

call COLCT{Z,tsys)

16 (NSTIE(2). 1e.0) return

tall REMOVE(Z,attribi

call serveiattribili)

return

end

ot N-hHerver Gueuing Svstem

in Frugram .

e FORTREN=-50 tmplementation 1s particularly weak 1in the set
mansQement ares. Since FURTRAN 1V does not support recoards ana
dvnamic memory management, 1t was necessary Lo create a larue two
1 MENIE) Oriad GETE Y a wach raow of whitch wonwld e averlable tror
possiirte amE el oher as an event Gr as oan entitv record,
VTheretore both recacd types «re ot the same slze.) When oot on
E=T= Ciresme: Fows ara <lrwng togebher 1ntoe & garbage list +rom
whiloh records ar e drawn as oneeded, aid Lo whicnh receras are
retur eed wlier e PunsQeEr i s, e Yol lowing subeoutines anag
trrc L omis v e dee e L Gpedd oar o Bl o s

-10-

'ipos’ fros set 'iset’, returns its index

+ L D it +
i Subroutine/Function? Purpose]
+ + - -t
+ INIT i Creates the record pool and links all]
i i records into the garbage list. :
} NENRECidussy) ; Removes next available record fros ;
' v the garbage list and returns its index |
} LNKREC{iset,irec) Links record ’irec’ into set nusber ’iset’?
5 LNKOUT tiset, ipas) 5 Reaoves the record in logical position 5

Table 7: List Frocessing Routines tar FORTRAN Implementation.

The records used for event scheduling and set management are &all
stored in the array LIST in the common area /LIST/ (note the non
standard naming convention). Their content is described in Figure
6. Note that & considerable amount of memory space 1s wasted due
to the restriction that all records be of the same si:ze.

+ +
+ +
1]
v v

+

HERDER RECORDS ; ENTITY RECORDS

iField + +
H nulber.USER DEF- .EvENY 1USER IEVENT
| e +INED SET | NOTICE DEFINED INOVICE |
:lnt.rea. HEADER .HEADER VENTITY ' {
zzzézzsé + == +
++ iNusber of .Nulber of Tise :
S .1nsertxons.1nsertxons. yof :
===+ | 4 -=¢ attrxb(l).event H
v+ ilurrent .Current :)
v 23 isize of isize of iset ranked. :
v 1 iTise spent:] .Event ;
+ 31 lin set by | ' iCode '
+---¢ 2 lentities | not used ; attrib{2)¢-------- +
v+ ino longer | ' : !
v 43 lin set : H H H
¢+ + + + + + -+
vy iTise of | : H :
H- B F 11 4 : ! : '
+-=-+ 3 ichange in } not used . attrlb(S).nnt used;
v istate of ') :
V61 iset i H ' :
bommpemnt + -t + ~———t
i+ 1 not used; : 1Avg inte!
HEY , \ irval fori
L B B i not used ; attribi4) irecur’nt)
oo) H .events. H
v 81 1 not used | : vor zero |
L St + ¢ B Attt +

Figure &: Content of Records in FORTRAN-8O Implementation

For convenience we store 4 byte reals and £ bvite 1nteqers 1n the
came array. The following eguivalence statements in FORTRAN are
used for this purpose:

REALI4 ALIST(4,100)
INTEGERS2 LIST(8, 100}
EBUIVALENCE (ALISTL, D), LISTUL. 1y)

All set related data 15 stored 1n the COMMON area /LIST/.
Headers, event records, and entity records are stored in the
array ALIST:; pointers are stored in the array IPTR. In Figure 7
we 1llustrate how the event list in Figures 4 and S might be
stored 1n this structure:

6ar Fut set set

bag ure 1 2
+ Y TR $ommman $ommmn L
H i vV 203V 5 0 6 0 T %o 990 record nuaber
4o=SToEIITIeSToéISsesxsésaé +s2z3=c¢ $===¢3z=¢
D list{l, i)t 0 -1020! : : TR
$mmmmmeonee toompomctomct=o=t204,6711000. 01203, 54 ¢ -~ 4~--¢
R R A : Lol
CLiSt(B,idl - t-d-t-d 20 3 4 4 i-i-t
tommmememee e et Y LR o + ¢ s
R N R PR I L
TR TS VR Y- $oemmee pomomnn $ommpmant
flistGid) - - i-1-4 -0 -1 - i-i-d
PO N S S P N— beembment
falistididi - L - i -0 - 0,000 0,00 3,00} - 4 - |
O S S S DU
viptrliy 280703040 6 0 20 5 1341
+ - L e Rt e $omm-o mom——— ARt St

Figure 7: FUORTRAN Representation of Event List in Figure 6.

4. Some Notes on Frogram Development

In developing the target language we took special care to
separate information that the modeller needs from information
that she does not need. This design goal was only partially met
in ouwr FORTRAN implementation. Specifically, we were unable to
hide the simulation data base from the user, as she is reguired
to include data base related COMMON statements in almost all her
subrroutines. Not only does this reduce program readability, it
trteaduces & significant sowce of errors as programmers
fregquentiy fail Lo place identical COMMON statements in all
tunctions and subroutines.

mrother goal of the target language was to tacilitate the
development of models that were selt+ documenting and easy to
roiail, Pgain, ouwr FORTRAN 1amplementation was only partially
suCoesst il . bitth shoart varisble names, o complle time constants
and e billock s=tructure, b ois extremely difficult Lo write
readable comeles proarams i FORTRAN.

-]12-~

B. FASCAL/MT+

. Rackground

Fascal /MT+ is & CF/M based true compiler with useful extensions
such as overlays, strings and separately caompiled modules. This
compiler 1s substantially larger and slower than ouw FORTRAN
compiler, and we were not able to use it on ow Heath/Zemith 7337
computer with single density 3 1/74" drives. Instead. we used a
iarger system (Sierra Data Bystems) with 8" drives,

Z. The N-server queuing system

Ouwr Fascal implementation of the N-server qgueuling model is
presented in Frogram 3.

prograa qiinput,output); {=m-mmomomommomes H
{$1leclns} procedure Depart
{$1Decl i {==mmmomomeeone- 3
(Start of user written sodel?
{ i var
(procedure Silulate;} TiselnSvstea : real;
var beqin
(-=--- varigbles used in sisulation sodel----- 3 eacveFros(BeingServedSet);
EndTime : Realy TiseInSystea := Tnow - attributel2):
EosTise : Real; Collect t 2, TiselnSystes ;;
NeaninterArrivalTise : real; It SizeOf iMaitinglineSet} + O then begin
NeanServTise : Real; KesoveFroa iMaitingLineSeti;
Servers ¢ Integer: StartService;
(-mmeommommomcnaee H end;
(procedure arrxval, end;
................. 3
begin
attributel1]:=TNow; begin (Sisulate’
it szeOf(Beanbervedhet) < Servers
then StartService EndTime = 14;
eise InsertIntoidaitinglineSet); HeanlnterﬁrrxvalT:ne = 0.5
end; MeanServiise := 0.4;
{- -} servers 1= |3
procedure StartService;
{ i Inttialize;
var Recurrent (ArrivalEvent. Meaninterdrrivallise);
ServiceTise : real; Schedule tLastEvent. EndTimel:
TiseWaited : real;
be?in repeat
iaeWaited := TNow - ate(2); extEvent;
1f i TiseWaited < 0.0 case turrentEvent of
Collect ti,TineNaited frrivalEvent 1 arrival;
Servicelise:= ErlangiMeanServiiae,3) : Departuretvent : depart:
dttributeflls=ServiceTime + TNow; end;
InsertintotbeingSer vedSet); untii (CurrentEvent = LastEvent):
ScheduleiDepartureEvent,ServiceTine:; Report:
end; Histogram;
end;) {Sraulate;
{ end of user sodel i
begin
Jlaujate;
end.
Feoige A A ascdas St v e tory G o bhe b el o pite st e Micadde]

-13-

J. Data base Design

The design of the database capitalizes on the taci that Fascal is
able to create and dispose of records dynamically as needed
without any cumbersome user-detined garbage list. (The price we
pay for this 1is that we no longer know 1n advance the exact
location of any specific record. Instead, we use pointer
variables to lead us indirectly to the desired information.)

Event notices are represented as records with the following
tormat:

Eventnotice : record

Tise : real; {Tise of event}
Type : integer; {Type of event}
Next : “ Eventnotice {Pointer to another event notice}

end;

Entities are represented as records with an essentially similar
format.

Unlike ouwr FORTRAN implementation in which all records were
required to be of the same size, our Fascal implementation allows
records of diffterent sizes. We exploit this flexibility by making
ouwr header records larger than our entity records sc that
additional performance intormation can be collected for each set.

The structure of the resulting database 1s presented 1n Figure g:

Persanent Records Records Dynasically Created and Disposed as Neeaed
Event Header Event notices
[+ [ZEEELE - + temomnn L *
' pointer !--------e---eeoo-- it Data ! pointer!---=i,.....,----7' Data ! pointer!---'*!
P + [ETEETES $ommncan- + toonona $ommennan +
Set Header (5) Entity Records
L [3 $oeemuoscccacanna +
' Array lesmsmssesesosoooes s Data !
L + ' collecten !
'oof fomome- } ! on set !
S + L e L L L + R LI IS +
' pointers '------ 2 ! entity pointer !------------- :' Attributes ! pointer!
R ¢ $mmmmmcmemecaaoa- + $ommmmmmeaean mcmmmome ¢
)] |
$mmemmmenae * $omommcanres .
v
$emmmemm—an . +
! Attributes ' oointer!
$momoemaocaa $oemmmnan *
- +
Collect Pointeris:
[) feccremce +
" Array of 'e-e-m----eceeeeoo- ' Lollected !
$ommemmoane + ‘ data '
' pointers ------ $osmmsmecsmeoen +
#ommmmmmo—- L3
Faadures e o uwCtur e o thie Fasecal bat abiéas

-14-

4. Some Notes on Program Development

Fascal is a strongly typed language (i.e. all variables must be
defined before they are used). 3Students trained in FORTRAN +ind
this to be annoying at first. However, there is no doubt that !
this feature substantially reduces the length of time it takes to
develop a working program.

Since Pascal does not support static variables, it was necessarv
to give a glabal scope to all variables used by ow language.
This was done by declaring these variables in the main program.
Fortunately, Fascal/MT+ provides an "“include” macro instruction
whereby the name of a file containing declarations can be used in
lieuw of the declarations themselves. This reduces user effort and
increases readability.

A separate procedure "Simulate" is used to contain the user
written model. This causes a clear separation between user
written code and data and global data used by the language i1tself.

C. ADA/JANUSG

1. Rackground

Ada 18 & large and complex language that appears from its
specitications to be extremely well suited for the design goals
of this project. A nice introduction to Ada is given in [i1].
Bryant [3]1 discusses simulation programming in Ada.

To our knowledge no complete implementation of Ada is available
for CF/M based micro-computers. However several "subsets" are
available. We acquired two versions for this study. Unfortunately
neither of these provide all the features required for a
simulation language. Ada/Supersoft [1131 does not support records
and dynamic memory management (not to mention packages and
separate caompilation . Ada/Janus [10] provides these features,
but does not (yet) support real variables. Both vendors promise
to implement the entire Ada languages in later versions.

In order to investigate the powers of Ada, we chaose to use
Ada/Janus, as we felt that the omission of real variables is
outweighed by the presence of records, memory management and
separately compiled packages. (We understand that real variables
will be provided "soaon”.)

At & First glance one may notice that Ada i1s very similar to
Fascal. However, Ada has more to offer in elegance and
program structure. Ada boasts of a high level of data
abstraction. By this we mean that it is possible in ADA to build
moedules which are entirely independent of each cther, and which
can be used without any knowledge of the internal design of the
module. This is one wf the most advanced features of ADA.

These aodules are called "Fackages". Fackages are the main
constructs of an ADA program. Each package has a declaration part
(optional) and & body part. The declaration part represents the

resorces (data structures, tvpes and the names of the
procedures/functions) available to the uvser. The package body
implenents these resources. The package body may contain

implenentation—dependent resowces hidden +rom the user. Fackages
containing only type and object declsrations do not need a body,
Benice there are no implementaetion detalls to hide +rom the user.
These may e used like the mamed COPMMON blocks 1n FORTRAN, only
thewse can e used much more vlesibly.

Unlibke Fagoal, whier e &ll the global TrbEs, CONGTANT G, data

slructures and varialdes had Lo be declared 1 the beginning of
LA T SR WY ANRTS | Y (N aitd shared by &bl the oot es, B Ccan bl ld up
JaosC b sagese aucty tlvat the soame alobal tvbEo. CUNSTANTS, data
s Lo ern Ayl b babales ar e dieiributed amarng these packages to
13 R TN WY RIGRTE B SRVARIRITE RN IT5 NERR S BN INE TN o WK T ke e, At compa le
L O T R PR BT s TR qCt Lober wepea abe Pt s ot tines which

contbd e ey sl DEcd By ot bt s b Qg

-16-

-

2. The N-server queuelng system

The Ada i1mplementation of the N-server queuweing model 1% as
+ollows:

With s,Events, Sets, Datacol; -
procedure arrive 15

package bodz Sisulateis 0000000 meeeeeecmececeeooo.
use s, Events, Sets, Datacol; begin
attribute(l) := Tise_Now;
Arrival Event : constant := ’a’; attridbute(2) := Tine Now;
Departure Event : constant := 'b’; if Size of(Beanservedsei) < Nusber ot Servers
Last_Event s constant 3= '1°; then Start Service;
else Insert_Into (Iax&antxneSet),
BeingservedSet : constant := 1; end it;
MaitinglineSet : constant := 2; end;
Current Event : character;
Tise : 1nteqer 1= 320003 procedure depart is
Nean Inter _Arrival _Tiae : integer := §; sms oemmemsseeeo-
Nean_Service Tise ~ : integer := 16; Tiee_Spent _in_Systes : integer;
Nusbér _of_Servers : integer := J; e
aenove _Fros{BeingservedSet);
Tiae_Sp ent in Systea := Ilui _Now - AttributelZ:;
procedure Start_Service is Collec s, Time Stent in_Systes);
it Size of (Uaxtlng ineSet? ; 0 then
Service Tise : integer; Resove From (NaitinglineSet);
Tise_Waited : integer; Start_Service;
end 1f;
be? end;
ise Maited := Tise Now - Attribute (2);
it Tise_Waited > 0 then
ollect (1,Time_Naited); begin
end if; nitialize_Event List;
Initialize Sets:
Service Time 1= Random (Mean Service Time); Initialize Data_Collection;
Attribufeil) := Service Time ™+ Time_Now; recurrent (Arrival Event, Mean_Inter Arrival Tise);
Insert Into (BennqServeabet)' Schedule (Last _Event, End RICIE
d:chedufe (Departure Event, Service Tise);
end;
Next Event (Current Event);
1¢ (Current Event=Last Event» or else (Time_Now»32760
then exit:
elsif Current_Event = Arrival Event then arrive:
else depart;
end 1¢;
end loop.
Set Report:
ColTect_Report;
end simulate;
Fragram 4: &DasJanos N-Ser ver Gueuelng Model

e Dalabiase Dewlgn

Mhe dela structore teeed 1 the Hoe Jdaaoae- Vi emenit At L 1€
tdentical Lo Uat of Lhe Fascel ST 6 tmplemero wo b oug, FHOWE ey L
Chape vnplementat oon these striv bures are deccib ool 10 1t tet ent
b oSy g et Livey LSt mandagemed i frack catee L1 bt ane: el matil g
Chee vkt Peraddedt Foeve o s annd b wnibo ity fgont Live wove it e hediund g
PRl o biv bt s eadedd Mttt o0 Lie ekt [EEEEENS N (% I

Thiea [N i1 Lhes vt) abs et ot " £ e " o] . wWltiiin

......

that package 1tselt. However, a pacrage can be made visible to
another at compile time with the use of a "WITH" clause. ihis
means that one package can use and alter another’s data, and
local variables ot a package will remain 1n existence between
calls to the packaqge.

4. Notes on Frogram Development

In our ADASTanus 1aplementation we found 1t easy to develop and
hide +rom the user separately compilled modules each contailning
parts of the entire simulation database and list processing
routines. This was one of our major design goals which we were
able to achieve only 1n this implementation. Another goal we
achieved here was totail freedom 1n the length of variable names.
This also contributed to the code being extremely sel f-
documenting.

nda’s modules are usetrul tools for providing the programmer with
modul ar computational ease. They allow algorithms /operations to
be 1ndependently developed and used as components of larger
programs., This facilitates top-down program development which 1s
only poassible with a lLanguage whose program units have a well
detined user interface that hides the implementation details. The
onlv global variables 1n ow i1mplementation were time "Time" and
"Trace".

The packages we developed in addition to the main program were:

Event scheduling package (EVENTS):
- contains in its declaration part the event record
type, event list, etc. It contains 1n 1ts body tne
procedures T or event scheduling given 1in fable X The
random number generator also resides in ths package
body since 1t was used +or the generation of events.

Set management (SETH) @
- contains 1n 1ts declaration the structure ot the set
header records, entity records, etc.. and 11 1ts budy
Lthe procedures outlined in Table 4.

Data Collection (DRTACOL) :
- gcontaing in 1ts declaration the data structures wr the
variouws datea collecting arcavs, and 1te body can be
seen in L1od.

M arawback ot thay rmplementation s that the tille
contairming the packade had to have the same name as the pack age.
[hte rest1oled the package nName Lo & chearacters. vendor ¢ ot

tdas danies Rope Lo have this restriction removed sOon.

~18~

i
1
1
|
1
i

IV.EVALUAT IO

Given the many ditferent schoois of thought 1n all areas or
applied simulation analysis, we do not hope to be able to provide

detinitive answers to the question of which language is "best"
for simulation. Instead, we restrict ow evaluation to «&
comparative study our three micro-computer bases lanquage

implementations. The results of this evaluation are discussed 1n
the t+ollowing sections, ana they are summarized in Table 8.

->
-

DESIGN OBJECTIVE

+ - -

Dbjective aet ?

> oo

! WODELLING CAPABILITIES (general purpose) i Ada/danus | FORTRAN-B0: Fascal/NT+ |
¢ - + + $ooomee -+
i - Discrete event scheduling using user written event routines : yes ; yes : yes ;
+ - Automatic scheduling of recurrent events : yes H yes : yes :
Vo Float::: foint tloc [no Poyes no :
i - Set sodelling capabilities with autosatic data collection : yes : yes] ves
! - Service routines for collection and display of user ionly integers! yes i ves ;
: specictied data. : : : :
i - Keyboard control of running aodels, ; yes] yes : yes)
+ - Five cosson randos nusber generators ionly 1integers: yes : yes
+ + + . -—-¢
i USER INTERFACE (user friendly) ;
¢ - + + D et +
i = The user should not need to understand the design of the yes H no H yes
' sisulation data base. : : : i
i - The user should not be able to cause run tise errars in] yes i sosewhat | yes ,
i the sisulation package (for exaaple by resoving & non H , :
i enisting entity), ;]] ;
i - The resulting code should be a self-docusented aodel : yes i ne yes |
i - Host lanquage should be designed to facilitate progras debugging i yes : no yes
v - Nodel verification should be facilitated by extensive error] yes } yes] yes
: checking and an interactively controlled trace feature. : : ' ;
+ + L it $oemmmmm— e +
i RESOURCE CONSIDERATIONS (rum on 8 bit smicros) : '
+ -- - L it tommmermme .
vo- The lan?uaqe should be seall enough ic allow roos for : ves ; yes] ves ‘
H reasonably complex models on a 64k byte micro-computer. i : i :
i - Tise required to compile and link a wmodel should be perhaps | ves : yes :
' sufficiently small to facilitate interactive sodel developsent H i :
+on a desk top computer. H , ' '
i~ Time to execute 3 model should not be excessive. + perhaps . perhaps . perhaps
+ ———- $mmmmn $mmmenmmmme s ORI A .
Table 8: Evaluation summary.
A. Modelling Capabilities.
With the e:xception of AdasJdanus’ abisence ot tlaat g palig

variabitles, we were able to 1aplement the entire si1mulalion sveten
in each programming language. However, the FUORTRAN cmplemental oo
was less Fflexible than the olther tmplementatlon: oS wWe wer e
required Lo specify at campille Uimer Ul aleco bt o ime s bone oot il
data collecltion and el mafiayement art avi,

Cach language provided the neCesscea v Oper GLING Svoled Liiler taos

rotbiniees bt factlibate rewag Cime torber rapt ean et Y IRy
L e U o mded .

~19-

B. Ueer 1ntertace.

Ferhaps the most sigmiticant diftfrerences 1n our 1mplementations
are in the data base area. our pramary goal of hidirmg the data-
base from the user was Only fully met 1n fadasJanus where the use
af separate paclages completely removed the entire simulatior
database trom the scope of the user., We were almost successful
in hiding the databese 1 Fascal /MT+, By nesting the user
programs 1nelde the simulation system, we relieved the user from
having to define the database. However the entire database 1s
sti1ll within her scupe. In FORTRAN-80 it was not possible to hide
the database at all.

The related gual of preventing the user from accidentally
changing the content of the database was met in Adas/Janus and
Fascal. It was unly partially met i1n FORTRAN-80. (Errore in user
written COMMON statements might result in & corrupted data base.)

With respect to the goal that the languages result in readable
simul ation model s, we wouwld yudge that this goal was reached for
Aadasdanus and, to & slightly lesser degree by Fascal/MT+. The
goal was not reached for the FORTRAN-80 implementation. (A seen
i Frogram £, even & simple, well written FORTRAN-38C program is
difficult Lo read.) Trnese diftferences in readability were caused
by zever al factors. We believe the most important of these to be:

. The abi1litv to hide confusing details

L. The use uf long variable names

e Block structuwred programming (begin—end, if-then-else;
4. Use ot named constants.

b Use of records.

We were able to implement reasonable error checking and trace
tectures 1 all systems. Modelling ervorse should therefore be
equally easy to find 100 each 1mplenentation. This 15 not =so, for
coding mistabes., rascal M7+ and AdasJanus are both strongly typed
Lanquages. Thie weanse that each variable must be explicitly
v ined before 1t 1e used. While thigs 18 annoyving to a FORTRAN
tradned proge anmer o Lhere e o doubt in ouwr opinion that this 1s
A valtabidle teoture theat helps eliminate coding errors and reduce
the toetail Lime requl ed Lo develoup & wot Bilag proar am,

FURTRAN-GU w werror messSages wer e contusing and often misleading.
b mddrtocare the FURKITRAN-530 compiler proved to nave a few strange
Uit . F oo erauprl e lank Lines at come Lirmes cause unpredictable
(TR e et A W S T R T S 01 o - at. ollher Liinmes e vere accepten

withenot Cogsi ettt s Flor e et Lus vy thetw appears Lo be &« buwyg 10
L weay ar Guuidienn s v e el V00 it Froom b cut tries., Fassing of
Codestensbn bl i s catised i edictabile caxlues L e relburned.
Foovvay by Dhiee v bhaeda- oo el e atnaal e f eadable as che old [aM

I R R R o R I N

20

Fascal MU+ L el easter Lo debsad aiid hias mach et 6 Cempal Ler
Err OFr MESSAUES. The marnual 1s alsa much Letter. (However we feel
that the inclusion of more conplete eramplies would e Reipful .
AdasJdants has all the advantages over FURTRAN that Fascal fhas.,
and 1n addition 1ts wmanual 1 gQuite readabile

C. Resouw ce Requiremenits

1. Memcory Reguivrement

Re presernted 1n Table 9 signiticant differences 1n storage
requirements were observed:

+SS=2SSz=2= T3==== zZ2=s b 2+ 3 44 +

: 1 Ada/Janus | :
$===2sszzzzSzsss= P33 3333 It A+ SR I A T I3 S S SIS T XTI I P X3] +*
1 Size of File containing ! 6k Mk] 27k]
) Executable Hodel ; ' : :
L e e --- o= mmmepme s meaan ¢
: ﬂaxxlun Oueue size for | 2035 1562 V1007

i N Server sodel H : i ;
$=2ZSz==zsZz=====3s====3=3= ¢==zszzzzz2== (21t 3 32+ - P PP T ST T+ 1 £ ===

Table v: A Comparison of Memory Reguirements

It 15 seen that a FORTRAN-80 model requires substantially more
disk space than the cther languages. Whitle this irn i1tselt i1e not
& serlious problem, 1t 15 a symptom of a serious drawback with the
FORTRAN-30 esystems; namely that the linker creates « +file that
containe both the executable code and the data storage area.
Hince the linker and this file must be memory resident at the
same bLime, the etfective memory space availlabile Lo & program 19
reduced. (The wther compilers are able to store data i1 the area
used by the linker, FORTRAN is nobt),

In order to get a measure of the relative si1ze oy problems that
could e modelled with ow three implementations., we measured the

laruest quewe sizes that could be accomodated without memor v
aver tlouw.

Mhite resull 1w also presented 1 the above table. it 1e =seen that
Fascal MTe could handle abroul 1000 customers at coe Lime whille
FiinTheid cotbd andle (500 and Adasdanus abiout Joog, since Fortean
TS A mmald Ler benuadge than Fascal we were ol supr L sed to
ke bhal s 0 lett o o Space tar dat e, fvoles e yer that whernever
we changed dimens one 1in our FORTRAN databicse we had tao recompille
afned Lok the enbice programnm. This was gl eCessar voin

Fascal and

DS Tarme Freee tac b thatl ndacdeaus Jedt cven od e <phace thar
Frase el o st Le 2 b 18146 totadl we o erat i o@ed that e Ve ds
s 10 Foestab exs il vt INTRE A AT Y VS B AT G A L EETH P A e
sra L L AL Lo oy B0 IRLEQEr L wmert 6 -] 0 sttt Clve e tvte
Pl v betd e iczed p1r Lhe bt her Laniguage . ittt Leg o For thi s
vl [ETE (SR PE R T TN Mescdes b a5 TGl et ik o v (R BN NI S el ez
[W PO [SIS IFSENE T (TR T IR N SNPINT 0 G BRCRT YUY S SR SO SN (O IURUPO IV SO U SNPORIFRN O (W IPRN YU RIS S o I

it nser b o

-21~

2. Lpeed

In Table {0 we present the results or tour ditferent timing

evaluaations. (A fi1+th measure "time to simulate 1000 departures®

vielded meaningless results due to AdarsrJanus’ absence of floating
point vari1ables).

i Pascal/NTs

+ Time to comptle leulat~' 793 sec

v 1on library : ' H
L + === +
i Tise to cospile model | 116 sec ; b2 sec
[e LT L e L] + + +
v Tise to link progras & 33 sec ; 5o <ec
L o L e +
+ Tise to cosprle and link: 189 sec v 108 sec
#ISSIISxSSssz=TozsIsIaaE=ss + $2=23=azzz=s2 +

Table 1u: A Coamparison of Resource Requirements

[t 15 sean that the time to complrle the simulation system 1tseldt
15 an arder of magnituwde slower with AdasJdanus than with the
athier systems. This 15 not a seriouws problem as the user would
not be expected to recompile this system very often. Turning now
to trhe Liase requared to compille the model and te link 1t to the
rest ot the simulation system, we see that FORTRAN @ has the
fastest compiler and the sitowest linker. Lombining the times tar
complailing and linking, we see that Fascal /MT+ ,and FURTRaN-GO
are equally fast (or slow?) and that AdasJarnus 15 about Lol
slower.

-22-

V. CONCLUES Lo

Each of our language 1mplementations exscel 11 SOMe ar e as.
FORTRAN~80 1g fast and memory etticient, Fascal M+ 18 auer
triendly and reasonably tast, and., Adasdanus has an esceptronal by
nice structure leading to programs that are quite readable and
easy to work with.

Ui the outher hand FORTRAN-8O 13 dit+icult to debug. Fascal bMi+ 3
not very memory efficient , arnd Ada 15 slow and does nmot at tin
time support real variables.

iy

Wi

Given the absence ot real variables in the present taplementatin,
af AdasJanus. we conclude that of the three languages, Fascal M+
15 the one best sul ted t ot miorocamputer tased si1mulatsan
analysis at this time. However we were extremelv 1mpressed with
the structure ot Adasdainus, anid., wrien floating point variables
become availlable, we believe andasJdanus would be the languaqge
worth considering.

RS a final consideration, we Note tnat the cloase Lo two minutes
required to compille and 1:ind sur imuletion models felt quite
eN(esEl v, D1NCce oSt Mmoadel s o e cunpr led wnd recamplied a larde
number of times, this mav 1hdeed e prohibitively elcesst ve. e
theretore believe that other appr aches to mocro-computer Dased
slimulation analysis that do et involve compllation and lainkiow
of user written programs are likely energe 1 the hiear tutare oo
a nore viable approach o micro compaber Lased =imulatian
model ling.

-2 3~

L.

E20h Ex) . L Llabdd3k bt v

Barnes, w.u.rr., Programming in Ada, Ui hi—Wesitv, 1rdo.

SBlacks tuie, deden ., AETRY & SEPEE Pt ga. whd e . Fhatlips., A
Twa—Laiet AV ST ST SO TS SE ST P edut g tar biscrete Event
ci1mulatian. Communications of the ACM, pvec 175l vol Z4. WNo.
12, ppaood-8ly.

Brvant, Ray. Discrete osvetems ormulation 1n Ada, Simulation,
et 19930, pplil-1ot.

Digital FRessarch ,Pascal/MT+ User’s Guide Release S, Fifth
Frointing, Facific Groave, Gk, 1981,

Franta, W.R., and turt Maly, A Comparison ot Heaps and the TL
Structure ftor the Himuleation Event Set, Communications of the
ACM, wcteober 970, Vol 1. Na o, pp 8753-d75.

Graguiol.teter . Frogramming in Fascal,. fAddirson-—-Wesiey,
Reading, Mass, 17ou.

rlcCormack, William M. and Robert G. Dargent, FAnalysis of
Future EBventset plgorithms for Discrete Event Simulation,
Communications of the ACM, December 1931, Veol. Z4, No 1Z,
SOl —E L.

Hicrosort. Fortran—-80 Documentation. Bellevue., Wa, 1979,

Froiterer, &.fA.B. ., The GASF IV Simulation Language, Wiley. New
LRl AP =2

R boftware. Janus/Ada Package User Manuals, Madizon WI,

R4 B

Supeer Aot t lric. Ada Release 1.00a User’®s Manual. Champaign,
o s

Theser, romne ang hekbha Deslive, S.ADA, S.For, and §.FAS
Frogram Listings, Depza-timent of Industrial Engineering.
Uriiversi bty or Wisconsin-Madiscn, 1785,

Waac e, dean 4, and Frervie Luval. & Comparisorn of
almul ation Evernt List o @alaorrthme, Communications ot the ACM,
April 197%, Vol 18, No 2, pp23-233.

24

SECURITY CLASSIFICATION OF THIS PAGE (HWhen Date Fntered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE ¢ OMPLETING FORY

. REPORT NUMBER
#2571 l,,» R

2, GOVY ACCESSION NO.
e

-~

3 RECIPIENTY'S CATALGU NUMUER

4. TITLE (and Subtiile)

Some Experiences with GASP-like Microcomputer
Simulation languages in FORTRAN, Pascal, and Ada

3. YYPE OF REPORT 8 PERIOD COVERED
Summary Report - no specific
reporting period

6. PERFORMING ORG REPORT NUMBER

—y

7. AUTHOR(s)

Arne Thesen and Rekha De Silva

8. CONTRACT OR GRANT NUMBER(S)

DAAG29-80-C-0041

9. PERFORMING ORGANIZATION NAME AND ADORESS
Mathematics Research Center, University of

610 Walnut Street Wisconsin
Madison, Wisconsin 53706

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNMIT NUMBERS

Work Unit Number 6 -
Miscellaneous Topics

1. CONTROLLING OFFICE NAME AND ADDRESS

U. S. Army Research Office

P.O. Box 12211
Research Triangle Park, North Carolina 27709

12. REPORYT DATE

September 1983

13. NUMBER OF PAGES

24

T4, MONITORING 3GENCY NAME & ADDRESS(1! different from Controlllng Oflice) | 15. SECURITY CLASS. (of this repart)
UNCLASSIFIED
TSa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Repart)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbstrect entered In Block 30, It diitferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by dlock numbar)

Simulation languages, Microcomputers, performance evaluation.

Pascal/MT+ and Janus (an Ada subset).
of these implementaticns are discussed.

20. ABSTRACT (Continue on reverse side |l necessary and Identify by tlock number)
The modelling and programming philosophy behind micro-computer software
used in teaching simulation is presented with implementations in FORTRAN-80,
The relative strengths and weaknesses

FORM

JAN T) EDITION OF 1 NOV 6515 OBSOLETE

DD, 1473

UNCLASSIFIED

SECURITY CL ASSIFICATION OF T111S PAGE (When Dsta Entored)

